二维几何变换相比三维略简单一点但原理基本一致,下列代码实现了平移、缩放、旋转变换,并有一个复合变换矩阵保存所有变换计算后的结果,方便用其结果在OpenGL进行渲染
#include#include class wcPt2D {public: GLfloat x, y;};typedef GLfloat Matrix3x3[3][3];const GLdouble pi = 3.14159;Matrix3x3 matComposite;void matrix3x3SetIdentity(Matrix3x3 &matIdent3x3){ GLint row, col; for (row = 0; row < 3; ++row) { for (col = 0; col < 3; ++col) { matIdent3x3[row][col] = (row == col); } }}void matrix3x3PreMultiply(Matrix3x3 m1, Matrix3x3 m2){ GLint row, col; Matrix3x3 matTemp; for (row = 0; row < 3; ++row) { for (col = 0; col < 3; ++col) { matTemp[row][col] = m1[row][0] * m2[0][col] + m1[row][1] * m2[1][col] + m1[row][2] * m2[2][col]; } } for (row = 0; row < 3; ++row) { for (col = 0; col < 3; ++col) { m2[row][col] = matTemp[row][col]; } }}void translate2D(GLfloat tx, GLfloat ty){ Matrix3x3 matTransl; matrix3x3SetIdentity(matTransl); matTransl[0][2] = tx; matTransl[1][2] = ty; matrix3x3PreMultiply(matTransl, matComposite);}void rotate2D(wcPt2D pivotPt, GLfloat theta){ Matrix3x3 matRot; matrix3x3SetIdentity(matRot); matRot[0][0] = cos(theta); matRot[0][1] = -sin(theta); matRot[0][2] = pivotPt.x * (1 - cos(theta)) + pivotPt.y * sin(theta); matRot[1][0] = sin(theta); matRot[1][1] = cos(theta); matRot[1][2] = pivotPt.y * (1 - cos(theta)) - pivotPt.x * sin(theta); matrix3x3PreMultiply(matRot, matComposite);}void scale2D(GLfloat sx, GLfloat sy, wcPt2D fixedPt){ Matrix3x3 matScale; matrix3x3SetIdentity(matScale); matScale[0][0] = sx; matScale[0][2] = (1 - sx) * fixedPt.x; matScale[1][1] = sy; matScale[1][2] = (1 - sy) * fixedPt.y; matrix3x3PreMultiply(matScale, matComposite);}void transformVerts2D(GLint nVerts, wcPt2D *verts){ GLint k; GLfloat temp; for (k = 0; k < nVerts; ++k) { temp = matComposite[0][0] * verts[k].x + matComposite[0][1] * verts[k].y + matComposite[0][2]; verts[k].y = matComposite[1][0] * verts[k].x + matComposite[1][1] * verts[k].y + matComposite[1][2]; verts[k].x = temp; }}